Differential synergy of Notch and T cell receptor signaling determines αβ versus γδ lineage fate

نویسندگان

  • Annette I. Garbe
  • Andreas Krueger
  • Fotini Gounari
  • Juan Carlos Zúñiga-Pflücker
  • Harald von Boehmer
چکیده

Thymic precursors expressing the pre-T cell receptor (TCR), the gammadeltaTCR, or the alphabetaTCR can all enter the CD4+ 8+ alphabeta lineage, albeit with different efficacy. Here it is shown that proliferation and differentiation of precursors with the different TCRs into alphabeta lineage cells require Notch signaling at the DN3 stage of thymic development. At the DN4 stage, Notch signaling still significantly contributes to the generation of alphabeta T cells. In particular, in alphabeta lineage commitment, the pre-TCR synergizes more efficiently with Notch signals than the other two TCRs, whereas gammadeltaTCR-expressing cells can survive and expand in the absence of Notch signals, even though Notch signaling enhances their proliferation. These observations suggest a new model of alphabeta versus gammadelta lineage choice in which lineage fate is determined by the extent of synergy between TCR and Notch signaling and in which the evolutionarily recent advent of the cell-autonomously signaling pre-TCR increased the efficacy of alphabeta T cell generation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific Notch receptor–ligand interactions control human TCR-αβ/γδ development by inducing differential Notch signal strength

In humans, high Notch activation promotes γδ T cell development, whereas lower levels promote αβ-lineage differentiation. How these different Notch signals are generated has remained unclear. We show that differential Notch receptor-ligand interactions mediate this process. Whereas Delta-like 4 supports both TCR-αβ and -γδ development, Jagged1 induces mainly αβ-lineage differentiation. In contr...

متن کامل

Lineage divergence at the first TCR-dependent checkpoint: preferential γδ and impaired αβ T cell development in nonobese diabetic mice.

The first TCR-dependent checkpoint in the thymus determines αβ versus γδ T lineage fate and sets the stage for later T cell differentiation decisions. We had previously shown that early T cells in NOD mice that are unable to rearrange a TCR exhibit a defect in checkpoint enforcement at this stage. To determine if T cell progenitors from wild-type NOD mice also exhibit cell-autonomous defects in...

متن کامل

Notch Signaling in T-Cell Development and T-ALL

The Notch signaling pathway is an evolutionarily conserved cell signaling system present in most multicellular organisms, as it controls cell fate specification by regulating cell proliferation, differentiation, apoptosis, and survival. Regulation of the Notch signaling pathway can be achieved at multiple levels. Notch proteins are involved in lineage fate decisions in a variety of tissues in v...

متن کامل

PTPN2 regulates T cell lineage commitment and αβ versus γδ specification

In the thymus, hematopoietic progenitors commit to the T cell lineage and undergo sequential differentiation to generate diverse T cell subsets, including major histocompatibility complex (MHC)-restricted αβ T cell receptor (TCR) T cells and non-MHC-restricted γδ TCR T cells. The factors controlling precursor commitment and their subsequent maturation and specification into αβ TCR versus γδ TCR...

متن کامل

Involvement of Notch in activation and effector functions of γδ T cells.

Notch signaling plays a pivotal role in cell fate decision and lineage commitment of lymphocytes. Although the role of Notch in CD4(+) and CD8(+) αβ T cells is well documented, there are no reports on how Notch signaling regulates effector functions of γδ T cells. γδ T cells are a minor fraction in the peripheral blood but are known to play a major role in defense against pathogens and tumors. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 203  شماره 

صفحات  -

تاریخ انتشار 2006